On the recursive properties of adjunction

Manuel Español-Echevarría, Université Laval

In this paper we propose an analysis of post-VP adjuncts in SVO languages in which (a) adjuncts are generated at a different plane from the one in which the structures they are attached to are assembled, cf. Chomsky (2004), and (b) adjuncts may be integrated into main structures in syntax through attachment at the bottom of these structures. We follow Chomsky (2004) in claiming that adjuncts are generated in separated planes, probably in order to fulfill a C-I interface requirement on richness of expressive power, more concretely predicate composition, which cannot be met through Merge. We further argue that adjunct attachment to the top node of a phrase introduces a point of symmetry, cf. [1], to be solved in the syntactic derivation, cf. Moro (2000), Di Sciullo (2005). This point of symmetry is effectively solved by merging adjuncts to the bottom of the VP they attach to. This Merge operation can be seen in part as a “tucking in” effect, cf. Richards (1997).

The proposed approach to adjunction allows for an account of the dichotomy between Right-adjunction configurations and VP-shell/Cascade configurations in the analysis of VP-adjunction, cf. [2], Larson (1988), Pesetsky (1995). The Right-adjunction configuration, cf. [2a], and its subsequent effects, corresponds to the structure of adjuncts at the plane attached to the main phrase, whereas the VP-shell configuration, cf. [2b], corresponds to the VP-internal position of adjuncts once “integrated” into the main phrase. Further evidence for the proposed approach will be provided from Focus-projection, cf. Selkirk (1995), Hornstein and Nunes (2008) and Kahnemuypour (2009). Finally, we will discuss the consequences of our proposal for the general issue of recursion in natural language. Certain types of VP-adjuncts are extremely recursive, as shown by the example of purpose clause recursion in [3], cf. Bach (1982), Jones (1991). In this case, recursion develops both at the C-I interface, since each new predicate formed by the attachment of a purpose clause is the subject of a new purposive predication, and in narrow syntax, since each new purpose clause is recursively attached at the bottom of an existing VP. On the order hand, other types of purposive expressions such as Rationale Clauses show a more restricted type of recursion, cf. [3], cf. Jones (1991). We argue that the simultaneous existence of two distinct types of recursive processes favours the robustness of recursion.

\[
\text{XP} \\
\text{YP} \quad \text{XP} \\
\text{ZP} \quad \text{XP}
\]

\[
\text{VP} \\
\text{VP} \quad \text{PP}_{\text{TEMP}} \\
\text{VP} \quad \text{PP}_{\text{LOC}}
\]

V DP

b. VP-shell structure

\[
\text{VP} \\
\text{V}_0 \quad \text{VP} \\
\text{PP}_{\text{LOC}} \quad \text{V}' \\
\text{V}_0 \quad \text{PP}_{\text{TEMP}}
\]

[3] I bought Bambi \[\text{to give } e \text{ to Mary } \text{PC1} \] \[\text{to pass } e \text{ to John } \text{PC2} \] \[\text{to take } e \text{ along on the camping trip } \text{PC3} \] \[\text{to read } e \text{ to the children } \text{PC4} \].

[4] ?? Fred started a food co-op \[\text{in order to save on his grocery bills } \text{RC1} \] \[\text{in order to pay his phone bills } \text{RC2} \] \[\text{in order to be able to call his girlfriend from his home } \text{RC3} \].

References